Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder

Simone de Jong1,2, Mateus Jose Abdalla Diniz3,4, Andiara Saloma3,4, Ary Gadelha3, Marcos L. Santoro5, Vanessa K. Ota3,5, Cristiano Noto3, Major Depressive Disorder and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium6, Charles Curtis1,2, Stephen J. Newhouse2,6,7, Hamel Patel2,6, Lynsey S. Hall8, Paul F. O’Reilly1, Sintia I. Belangero3,5, Rodrigo A. Bressan3 & Gerome Breen1,2

Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
The development of polygenic risk scoring (PRS) has greatly advanced the field of psychiatric genetics. This approach allows for even sub-genome-wide significant threshold results from large genome-wide meta analyses to be leveraged to explore genetic risk in smaller studies. The effect sizes at many individual single-nucleotide polymorphisms (SNPs), estimated by large genome-wide association studies (GWAS) on the disorder of interest, are used to calculate an individual level genome-wide PRS in individuals from an independent genetic dataset. The PRS based on the summary statistics of the schizophrenia (SCZ) GWAS by the Psychiatric Genomics Consortium (PGC) has proven to be most powerful in predicting not only SCZ, but also other psychiatric disorders. In addition, updated, more powerful, summary statistics from the Psychiatric Genomics Consortium from the latest GWAS for bipolar disorder (BPD) and major depressive disorder (MDD) are available via the PGC Data Access Portal (https://www.med.unc.edu/pgc/shared-methods).

Aside from increasing power in traditional case-control designs, PRS algorithms also open up new avenues for studying common variation. In this study, we consider the application of PRS within a family context. While pedigree studies have been traditionally used to explore rare genetic variation through linkage analyses, studying patterns of PRS throughout a pedigree would allow for assessment of phenomena like assortative mating and anticipation. Assortative (non-random) mating is a common phenomenon where mated pairs are more phenotypically similar for a given characteristic than would be expected by chance. Results from a recent study by Nordsletten et al. show extensive assortative mating within and across psychiatric, but not physical disorders. This could explain some of the features of the genetic phenomenon as evidenced by no significant differences in PRS as compared to the population control group (BRA; see Methods).

In the current study, we aim to discuss the application of polygenic risk scoring for SCZ, MDD, and BPD to explore patterns of common risk variation within a family context. We illustrate our discussion by investigating the relationship between PRS and apparent assortative mating, and anticipation within a complex multigenerational pedigree affected with mood disorders.

Results

Study overview. We identified a large pedigree in Brazil, the Brazilian Bipolar Family (BBF), after examination of a 45-year-old female who presented with severe Bipolar Type 1 (BPI) disorder. She stated there were dozens of cases of mood disorders in the family, most of whom lived in a small village in a rural area of a large state north of São Paulo (see Methods for details). We conducted 308 interviews using the Portuguese version of the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I/16 for family members over the age of 16 and the Portuguese version of Kiddie-SADS-Present and Lifetime Version (K-SADS-PL) for family members aged 6–16. Following diagnostic interviews, we conducted genotype analysis of all interviewees using the illumina Illuminum PsychArray-24. Polygenic risk scores (PRS) were assigned to each family member using PRS thresholds most predictive in discriminating affected from unaffected family members (see Methods).

Affection status. The PRS thresholds were selected to optimally discriminate between affected (n = 78) versus unaffected (n = 147) family members with a higher score in affected for SCZ:PRS (Beta = 0.069, SE = 0.032, Z-ratio = 2.117, p = 0.035, R² = 0.021), and BPD:PRS (Beta = 0.094, SE = 0.030, Z-ratio = 3.123, p = 0.002, R² = 0.039). None of the PRS significantly discriminated between individuals having experienced a psychotic episode at some point in their lives (n = 25) versus the unaffected group (n = 147). Visualization of PRS in different diagnostic categories is shown in Supplementary Figure 1.

Assortative mating. Married-in individuals were defined as individuals married to a BBF member, but having no parents in the family themselves. Of the 70 married-in individuals ascertainment (irrespective of having genotype data) 19 (27%) were affected with a psychiatric disorder. This is significantly higher than the 17% population prevalence of the most common of the three disorders: MDD (Fisher’s exact p = 0.02). The unaffected married-in group does not differ from the general healthy population as evidenced by no significant differences in PRS as compared to the population control group (BRA; see Methods).

The above led us to investigate whether we can observe assortative mating on a genetic level, using PRS. In spouse pairs, we were unable to predict the PRS of the husband, using that of his wife, even when selecting concordant (both affected or both unaffected) pairs only. We considered the possibility that the married-in individuals might confer a different genetic predisposition to mood disorders to their offspring than the original family members. The number of children contributed per spouse pair to each offspring category is shown in Supplementary Table 1. Demographics of the offspring in the different offspring categories (no affected parents (n = 54); one affected family member parent (n = 69); one affected married-in parent (n = 15) and two affected parents (n = 30)) are given in Supplementary Tables 2 and 3. Indeed, we find that offspring of an affected married-in parent show increased SCZ:PRS (Beta = 0.209, SE = 0.064, Z-ratio = 3.288, p = 0.002, R² = 0.186, Fig. 1) and BPD:PRS (Beta = 0.172, SE = 0.066, Z-ratio = 2.613, p = 0.013, R² = 0.126, Fig. 1) as compared to having no affected parents.

Anticipation. The BBF shows patterns of anticipation, with individuals having an earlier age at onset (AAO) in later generations. For 104 individuals (irrespective of having genotype data), the average age at onset significantly decreases over generations with G2 (n = 1, AAO = 8), G3 (n = 23, AAO = 30.2 yrs ± 21.1), G4 (n = 53, AAO = 31.2 yrs ± 12.3), G5 (n = 5, AAO = 19.7 yrs ± 9.5), and G6 (n = 4, AAO = 13 yrs ± 3.6) (Supplementary Table 2) with older participants recalling their AAO directly and younger participants recalling their AAO indirectly using clinical records or parental recall (Beta = −4.549, SE = 1.793, Z-ratio = −2.537, p = 0.013, R² = 0.059). We hypothesized that this decrease in AAO would be reflected in a negative correlation with PRS, subsequently resulting in a pattern of increased PRS over generations. Because of a limited sample size of affected individuals per generation, a direct correlation of AAO and PRS does not reach significance, although the youngest generation (G5) does show trends towards negative correlations for SCZ:PRS and MDD:PRS (Supplementary Figure 3). The SCZ:PRS does show a significant increase over generations (Fig. 2) where n = 197 family members were included (46 married-in individuals were excluded from the analysis to capture inheritance patterns of SCZ:PRS) in a linear regression with generation as independent variable (Beta = 0.131, SE = 0.049, Z-ratio = 2.668, p = 0.008, R² = 0.025). The presence of such an effect when comparing generations suggests ascertainment effects such as relying on the recall of older family member with very long duration of illness in previous generations may be masking an overall effect across the entire family.

2 COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0155-y | www.nature.com/commsbio
Discussion
The current study is one of the first to study patterns of
common genetic variation within a traditional pedigree
design. While increased polygenic scores in patients as
compared to unaffected family members have been demonstrated recently17,
we aimed to illustrate the possibilities of this approach by investigating apparent assortative mating and anticipation in a
large multigenerational pedigree affected with mood disorders
through polygenic risk scores for SCZ2, MDD18, and BPD19, and thereby improve mechanistic understanding of common genetic risk for psychiatric disorders.

Highlighting the possibilities of PRS applications within a
family context, we set out to utilize patterns of common variation to
illuminate phenomena within the family that are out of reach
from traditional case/control studies. Assortative mating is one of
the features in this family, where many married-in individuals are
more affected with a mood disorder than the general population.
As opposed to the family members, the married-in individuals
were more often affected with (r)MDD instead of BP. As diagnoses
were determined after the couples were married, we cannot
rule out that this could be a result from a causal effect of a spouse’s
mental health on that of their partner. However, non-random
mating patterns have been reported in the population regarding
body type, socio-economic factors and psychiatric traits8,10. The
BFB provides a unique opportunity to look at the genetic corre-
lation between spouse pairs and the contribution of married-in individuals to overall psychiatric morbidity. A recent study has
found genetic evidence for assortative mating when studying BMI
and height in spouse pairs11. In the BFB, the affected married-in
individuals have a higher, though non-significant, polygenic score
than affected or unaffected family members but it appears that we
observe significant consequences of this in that the offspring of an
affected married-in parent collectively show significantly increased
SCZ:PRS and BPD:PRS. However, it is puzzling we do not see an
effect on offspring of two affected parents (which would include a
married-in parent), which could indicate this finding to be of
limited statistical robustness.

A contribution of the married-in parents to a genetic driven
anticipation in age of onset is supported by the increase in SCZ:
PRS over generations, although our cross sectional study dataset
was less well powered to find an association with age at onset
within affected family members. We did observe a trend for
association between age at onset and PRS in the youngest
generation in this study but not when combining sample across
generations. Age at onset can be considered a proxy for
severity20,21 and has been previously associated with genetic risk
in MDD13,14. However, this variable needs to be interpreted with
cautions, especially when analyzing patterns over time since it is
dependent on context and memory22. Ascertainment bias can be
a confounding factor in studies of psychiatric traits, with older
generations having less access to psychiatric care and possibly
misremembering the onset or nature of their first episode. In
addition, although currently classified as “unaffected” or
“unknown”, members of the youngest generations can still
develop a psychiatric disorder in the future.

Finally, we explored the balance of common and rare risk
variation through combining our current PRS results with
previously performed linkage analyses. We did not find a decrease in potential rare risk allele genotypes over generations contrasting the increase in SCZ:PRS, and PRS profiles for individuals carrying rare risk genotypes are not significantly different. This indicates that these factors separately confound independent disease risk. We recognize the limitations in sample size of our pedigree and therefore the power to draw statistically robust conclusions, especially in the offspring and combined linkage and PRS analyses. Even though the BBF might not be sufficiently powered, our point is to use this dataset to illustrate our approach and emphasize the unique nature of the family enabling the study of patterns of PRS and the balance of common and rare genetic risk for psychiatric disorders conferred within families. We encourage replication in similar pedigrees including affected married-in individuals when available to fully utilize the potential of PRS in this setting.

In conclusion, our study is an exploration of PRS as a tool for investigating patterns of common genetic risk in a traditional pedigree context. The SCZ and BPD scores appear best suited in investigating patterns of common genetic risk in a traditional setting. The SCZ and BPD scores appear best suited in investigating patterns of common genetic risk in a traditional setting. This setting.

Methods

Subject description

The Brazilian bipolar family (BBF) was ascertained via a 45-year-old female proband who presented with severe Bipolar Type 1 (BPI) disorder during their lifetime. Historically, the entire BBF consists of 960 individuals (197 family members and 46 married-in individuals) and 57 BRA controls. The BBF and the BRA control dataset at the in-house BRC BioResource Illumina core lab according to manufacturers protocol. Samples were excluded when average call rate was <89%, missingness >1% with additional check for excess heterozygosity, sex, family relationships and concordance rates with previous genotyping assays. SNPs were excluded when missingness >1%, MAF <0.01 or HWE <0.00001 and if showing Plink v1.07 or Merlin v1.1.29. The BBF and BRA control datasets were QC separately and then merged, applying the same SNP QC thresholds to the merged dataset as well. This quality control procedure resulted in a dataset of 225,235 SNPs for 243 BBF individuals (197 family members and 46 married-in individuals) and 57 BRA controls. Eigensort v4.20 was used to check for population differences between the BBF family members, married-in individuals and BRA control sets. The BBF members self-reported mixed Southern European ancestry, confirmed by genome-wide principal components analysis showing that family members clustered closely with the Northern and Western European and Tuscan Italian populations in Hapmap3, with a relative lack of African or Native American ancestry (Supplementary Figure 6). The principal components appear to represent within-family structure, with most PCs seemingly separating subfamilies (Supplementary Figures 7 and 8). PRS analyses as described below were also performed to include subfamily as a fixed effect, controlling for household effects (Supplementary Table 3). PC1 and PC2 are significantly correlated to the SCZ:PRS (PC1 r = −0.131, p = 0.023; PC2 r = −0.268, p = 2.61 × 10−5), PC1 to MDD:PRS (PC1 r = −0.251, p = 1.11 × 10−5), and PC1 and PC2 to BPD:PRS (PC1 r = 0.189, p = 9.71 × 10−4, PC2 r = −0.123, p = 0.033). The principal components were not used in subsequent analyses.

Polymorphic risk scores

Polymorphic risk scores for each family member (n = 243) and population control (n = 57) were generated in the same run using the PRSice v1.25 software31 with the publicly available PGC schizophrenia GWAS3 as a base dataset (36,989 SCZ cases, 113,075 controls), in addition to MDD (51,865 MDD cases, 112,200 controls, not including index individuals) and BPD (20,352 BPD cases, 31,358 controls) summary statistics from the latest PGC meta analyses (unpublished data32). We performed p-value-informed clamping on the genotype data with a cut-off of r2 = 0.25 within a 200-kb window, excluding the MHC region on chromosome 6 because of its complex linkage disequilibrium structure. Acknowledging the possibility of over-fitting, we selected the PRS thresholds most predictive in discriminating affected from unaffected family members through linear regression in PRSice for SCZ:PRS (p < 0.00055, 1218 SNPs), MDD:PRS (p <

Acknowledgements

We would like to thank the family members for their enthusiastic participation. We thank our ethics consultant Prof. Barbara Prainsack for insightful discussions. This paper represents independent research part-funded by FAPESP (2014/50830-2; 2010/08968-6), the Marie Curie International Research Staff Exchange (FP7:PEOPLE-2011-IRSES/ 295192), and the National Institute for Health Research (NIHR) Biomedical Research Centre.
Major Depressive Disorder and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium

Naomi R. Wray9,10, Stephan Ripke11,12,13, Manuel Mattheisen14,15,16,17,18, Maciej Trzaskowski9, Enda M. Byrne9, Major Depressive Disorder and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium

Competing Interests: G.B. has been a consultant in preclinical genomics and has received grant funding from Eli Lilly Ltd within the last 3 years. A.G. has participated in advisory boards for Janssen-Cilag and Daiichi-Sankyo. The remaining authors declare no competing interests.

Additional information

© The Author(s) 2018

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

9Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. 10Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia. 11Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 12Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany. 13Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 14SEQ. Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark. 15Department of Biomedicine, Aarhus University, Aarhus, Denmark. 16Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden. 17Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany. 18PSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. 19Department of Biological Psychology & EMGO+I Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands. 20Division of Psychiatry, University of Edinburgh, Edinburgh, UK. 21National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark. 22Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark. 23Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia. 24Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany. 25Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. 26Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA. 27Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark. 28Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, Netherlands. 29Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA. 30Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA. 31Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 32Translational Neuropsychiatry Unit, Department of Medicine, Aarhus University, Aarhus, Denmark. 33Human Genetics, Wellcome Trust Sanger Institute, Cambridge, UK. 34Statistical Genetics and Systems Genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK. 35Department of Psychiatry, University Hospital of Lausanne, Prilly, Lausanne, Vaud, Switzerland. 36Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. 37Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia. 38Center for Genomic and Computational Biology, Duke University, Durham, NC, USA. 39Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA. 40Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK. 41Institute of Human Genetics, University of Bonn, Bonn, Germany. 42Department of Genomics, Life&Brain Center, University of Bonn, Bonn, Germany. 43Epidemiology, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands. 44Psychiatry, Dokuz Eylül University School of Medicine, İzmir, Turkey. 45Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. 46Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA. 47Neuroscience and Mental Health, Cardiff University, Cardiff, UK. 48Bioinformatics, University of British Columbia, Vancouver, BC, Canada. 49Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 50Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA. 51Department of Psychiatry (UPK), University of Basel, Basel, Switzerland. 52Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland. 53Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University-Mannheim, Baden-Württemberg, Germany. 54Department of Psychiatry, Trinity College Dublin, Dublin, Ireland. 55Department of Psychiatry & Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA. 56Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark. 57Department of Neurology, Danish Headache Centre, Rigshospitalet, Glostrup, Denmark. 58Institute of Biological Psychiatry, Mental Health Centre ScHans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark. 59Brain and Mind-Centre, University of Sydney, Sydney, NSW, Australia. 60Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany. 61Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, HF Hoffmann-La Roche Ltd, Basel, Switzerland. 62Max Planck Institute of Psychiatry, Munich, Germany. 63Department of Psychological Medicine, University of Worcester, Worcester, UK. 64Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA. 65Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, CA, USA. 66Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 67Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA. 68Informatics Program, Boston Children’s Hospital, Boston, MA, USA. 69Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. 70Department of Endocrinology at Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark. 71Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne, Lausanne, Vaud, Switzerland. 72Swiss Institute of Bioinformatics, Lausanne, Vaud, Switzerland. 73Mental Health, NHS, Glasgow, UK. 74Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany. 75Statistics, University of Oxford, Oxford, UK. 76Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA. 77School of Psychology and Counseling, Queensland University of Technology, Brisbane, QLD, Australia. 78Child and Youth Mental Health Service, Children’s Health Queensland Hospital and Health Service, South Brisbane, QLD, Australia. 79Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia. 80Estonian Genome Center, University of Tartu, Tartu, Estonia. 81Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada. 82Department of Statistics, University of British Columbia, Vancouver, BC, Canada. 83DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany. 84Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany. 85Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia. 86Humus Inc, Reykjavik, Iceland. 87Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, Netherlands. 88Complex Trait Genes, Vrije Universiteit Amsterdam, Amsterdam, Netherlands. 89Solid Biosciences, Boston, MA, USA. 90Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA. 91Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, Spain. 92Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. 93Department of Psychiatry and Psychotherapy, Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany.
Germany. 94 Institute of Psychiatric Genomics and Genomics (IPGG), Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany. 95Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, USA. 96Department of Psychiatry, Faculty of Medicine, University of Iceland, Reykjavik, Iceland. 97School of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia. 98Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK. 99deCODE Genetics/Amgen, Reykjavik, Iceland. 100College of Biological Sciences, Cardiff University, Cardiff, UK. 101Institute of Epidemiology and Social Medicine, University of Münster, Münster, Nordrhein-Westfalen, Germany. 102Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany. 103Department of Psychiatry, University of California, San Diego, San Diego, CA, USA. 104KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 105Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, UK. 106Clinical Neurosciences, University of Cambridge, Cambridge, UK. 107Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands. 108Roche Pharmaceutical Research and Early Development, Neurosensory, Ophthamology and Rare Diseases Discovery & Translational Medicine Area, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland. 109Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany. 110Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands. 111Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA. 112Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland. 113Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany. 114Department of Psychiatry, University of Münster, Münster, Nordrhein-Westfalen, Germany. 115Amstalden Public Health Institute, Vrije Universiteit Medical Center, Amstterdam, Netherlands. 116Centre for Integrative Biology, Universität degli Studi di Trento, Trento, Trentino-Alto Adige, Italy. 117Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 118Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, USA. 119Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. 120Department of Psychiatry, University of Toronto, Toronto, ON, Canada. 121Centre for Addiction and Mental Health, Toronto, ON, Canada. 122Division of Psychiatry, University College London, London, UK. 123Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA. 124Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 125Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, Denmark. 126University of Liverpool, Liverpool, UK. 127Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark. 128Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA. 129Psychiatry, Harvard Medical School, Boston, MA, USA. 130Psychiatry, University of Iowa, Iowa City, IA, USA. 131Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Goettingen, Niedersachsen, Germany. 132Human Genetics Branch, NIMH Division of Intramural Research Programs, Bethesda, MD, USA. 133Faculty of Medicine, University of Iceland, Reykjavik, Iceland. 134Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands. 135Psychiatry, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands. 136Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. 137Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA. 138Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. 139Department of Medical & Molecular Genetics, King’s College London, London, UK. 140Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA. 141Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 142Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 143Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada. 144Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada. 145Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK. 146Alvord Brain Tumor Center and Neurological Surgery Clinic, University of Washington Medical Center, Seattle, WA, USA. 147Department of Psychiatry, Ichsan School of Medicine at Mount Sinai, New York, NY, USA. 148Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA. 149Department of Medicine, Psychiatry, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA. 150Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 151Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA. 152Molecular & Behavioral Neuroscience Institute and Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA. 153Biostatistics, University of Minnesota System, Minneapolis, MN, USA. 154HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. 155Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA. 156Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA. 157Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA. 158Department of Medical Genetics, Oslo University Hospital, Oslo, Norway. 159Department of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway. 160Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 161Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. 162Department of Psychiatry, St. Olavs University Hospital, Trondheim, Norway. 163Psychiatry, Berkshire Healthcare NHS Foundation Trust, Bracknell, UK. 164Psychiatry, North East London NHS Foundation Trust, Ilford, UK. 165Psychiatry and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA. 166Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden. 167Department of Molecular Medicine and Surgery, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden. 168Psychiatry, Translationalmente, Inserm U955, Créteil, France. 169Faculté de Médecine, Université Paris Est, Créteil, France. 170Département de Psychiatrie, Hôpital H. Mondor-A. Chenevier, Assistance Public-Hôpitaux de Paris (AP-HP), Créteil, France. 171Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany. 172Department of Biomedicine, University of Basel, Basel, Switzerland. 173Neuroscience Research Australia, Sydney, NSW, Australia. 174School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia. 175Mental Health Department, University Regional Hospital, Biomedicine Institute (IBIMA), Málaga, Spain. 176Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland. 177Psychiatric Center Nordbaden, Wiesloch, Germany. 178Kliniken des Bezirks Oberbayern, Munich, Germany. 179Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. 180Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France. 181Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain. 182School of Psychiatry, University of New South Wales and Black Dog Institute, Sydney, NSW, Australia. 183Department of Clinical and Developmental Psychology, Institute of Psychology, University of Tubingen, Tubingen, Germany. 184The Scripps Translational Science Institute and Scripps Health, La Jolla, CA, USA. 185Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA. 186Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA. 187Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA. 188Department of Human Genetics, University of Chicago, Chicago, IL, USA. 189Rush University Medical Center, Chicago, IL, USA. 190Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA. 191Washington University School of Medicine, St. Louis, MO, USA. 192Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, CA, USA. 193Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA. 194Department of Mental Health, Johns Hopkins University and Hospital, Baltimore, MD, USA. 195Neurogenomics, TGen, Phoenix, AZ, USA. 196Department of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK. 197Department of Psychiatry, School of Clinical and Experimental Medicine, Birmingham University, Birmingham, UK. 198Division of Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK. 199University of British Columbia (UBC) Institute of Mental Health, Vancouver, BC, Canada.