<table>
<thead>
<tr>
<th>Biological Pathways</th>
<th>Candidate genes</th>
<th>Quality of life domain</th>
<th>Literature</th>
</tr>
</thead>
</table>
| Cytokine-cytokine receptor interaction | **IL-1β** | • General health
• Physical functioning
• Fatigue
• Pain
• Emotional functioning - Depression
• Anti-depressant response | • (1)
• (1)
• (1)
• (2, 3)
• (4, 5) |
| | **IL-6** | • Overall quality of life
• General health
• Physical functioning
• Fatigue
• Pain
• Emotional functioning - Depression
• Social functioning
• Cognitive functioning | • (1)
• (1)
• (1, 7)
• (8-10)
• (10-12)
• (4, 5, 8, 13-15)
• (1)
• (10) |
| | **IL-8** | • Pain
• Emotional functioning - Depression
• Cognitive functioning | • (16)
• (4, 17)
• (18) |
| | **TNF-α** | • Physical functioning
• Fatigue
• Pain
• Emotional functioning - Depression
• Social functioning | • (1, 7, 19)
• (8, 10, 18, 20)
• (2, 11)
• (6, 13)
• (1) |
| • inflammation | **CRP** | • Fatigue
• Emotional functioning - Depression | • (9)
• (14) |
| • anti-inflammatory | **IL-1RN** | • General health
• Physical functioning
• Fatigue
• Pain
• Emotional functioning - depression
• Social functioning | • (1)
• (1)
• (1)
• (1)
• (1)
• (1) |
| | **IL-1RA** | • Fatigue
• Pain | • (9, 18)
• (3, 21) |
<table>
<thead>
<tr>
<th>Biological Pathways</th>
<th>Candidate genes</th>
<th>Quality of life domain</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IL-10</td>
<td>• General health
• Physical functioning
• Fatigue
• Pain
• Emotional functioning – Depression
• Cognitive functioning</td>
<td>• (1)
• (1)
• (1)
• (10)
• (4, 5, 15, 22)
• (15)</td>
</tr>
<tr>
<td>Dopaminergic synapse</td>
<td>COMT</td>
<td>• Fatigue
• Pain
• Emotional functioning – Depression
• Emotional functioning – Positive affect
• Cognitive functioning
• Social functioning</td>
<td>• (23)
• (24-34)
• (35)
• (36)
• (37-39)
• (40, 41)</td>
</tr>
<tr>
<td></td>
<td>DRD2</td>
<td>• Emotional functioning – Depression
• Emotional functioning – Anxiety
• Social functioning</td>
<td>• (35, 42)
• (42)
• (42-44)</td>
</tr>
<tr>
<td></td>
<td>DRD4</td>
<td>• Physical functioning
• Fatigue
• Emotional functioning depression
• Cognitive functioning
• Social functioning</td>
<td>• (45)
• (39)
• (46)
• (47)
• (48)</td>
</tr>
<tr>
<td></td>
<td>DAT1</td>
<td>• Physical functioning
• Fatigue
• Cognitive functioning</td>
<td>• (49, 50)
• (39)
• (39)</td>
</tr>
<tr>
<td></td>
<td>CREB1</td>
<td>• Pain
• Emotional functioning – Depression</td>
<td>• (51)
• (52)</td>
</tr>
<tr>
<td>Dopaminergic synapse/ Serotonergic synapse</td>
<td>MAOA</td>
<td>• Emotional functioning – depression
• Emotional functioning – positive affect
• Social functioning</td>
<td>• (46)
• (53)
• (54)</td>
</tr>
<tr>
<td>Serotonergic synapse</td>
<td>5-HTT
(SLC6A4)</td>
<td>• Pain
• Emotional functioning – depression
• Emotional functioning – anxiety
• Emotional functioning – positive affect
• Social functioning</td>
<td>• (34, 55-57)
• (58-62)
• (63-67)
• (68)
• (69)</td>
</tr>
<tr>
<td>Biological Pathways</td>
<td>Candidate genes</td>
<td>Quality of life domain</td>
<td>Literature</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>TPH1</td>
<td></td>
<td>• Overall quality of life • Fatigue • Pain • Emotional functioning - Depression • Emotional functioning - anxiety</td>
<td>(70) (70) (70) (71) (70)</td>
</tr>
<tr>
<td>Neurotrophin signaling pathway</td>
<td>• BDNF</td>
<td>• Emotional functioning – depression • Cognitive functioning • Social functioning</td>
<td>(5, 6, 52, 72-74) (38, 75) (76)</td>
</tr>
<tr>
<td></td>
<td>• OXTR</td>
<td>• Emotional functioning – depression • Emotional functioning – anxiety • Emotional functioning - loneliness • Social functioning</td>
<td>(77, 78) (79) (80) (69, 81-84)</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>• APOE</td>
<td>• Physical functioning • Emotional functioning - Depression</td>
<td>(85-88) (89-91)</td>
</tr>
<tr>
<td>Neuroactive ligand-receptor interaction</td>
<td>• OPRM1</td>
<td>• General health • Pain • Emotional functioning • Social functioning</td>
<td>(92) (93-99) (36) (100)</td>
</tr>
<tr>
<td></td>
<td>• AVPR1A</td>
<td>• Emotional functioning – depression • Social functioning</td>
<td>(101) (81, 82, 102-105)</td>
</tr>
<tr>
<td>Glutathione metabolic pathway</td>
<td>• DPYD</td>
<td>• Physical functioning • Fatigue</td>
<td>(106) (106, 107)</td>
</tr>
</tbody>
</table>

*Biological pathways are according to KEGG (Kyoto Encyclopaedia of Genes and Genomes), http://www.genome.jp/kegg/ or Genecards, http://www.genecards.org/
REFERENCES

 patient sample; candidate gene study

 patient sample + healthy individuals; candidate gene study (buccal swab)

 population-based; candidate gene study

 patient sample + healthy individuals; candidate gene study

 review

 patient sample + healthy individuals; candidate gene study

 patient sample; candidate gene study
 NEW REFERENCE Sep 2013

 population-based; candidate gene study

 patient sample; biomolecular marker

 review

 patient sample; candidate gene study

patient sample; candidate gene study

meta-analyses

population-based; GWAS

patient sample; candidate gene study

patient sample; candidate gene study

patient sample + healthy individuals; candidate gene study

patient sample; biomolecular marker

population-based; candidate gene study

NEW REFERENCE Sep 2013

patient sample + healthy individuals; candidate gene study

patient sample; candidate gene study

patient sample + healthy individuals; candidate gene study

sympathetic nervous and mucosal immune systems in breast cancer survivors.

patient sample; candidate gene study (saliva)

healthy individuals; candidate gene study

patient sample; candidate gene study (saliva)

patient sample; candidate gene study

healthy individuals; candidate gene study

population-based; candidate gene study

patient sample + matched healthy individuals; candidate gene study

patient sample; candidate gene study

patient sample; candidate gene study

patient sample; candidate gene study

patient sample, candidate gene study (buccal swab)

review

healthy individuals; candidate gene study (buccal cells)

meta-analyses; population based; candidate gene study (swab samples)

healthy individuals; candidate gene study (saliva)

patient sample + matched controls; candidate gene study (blood or mouth swab)

healthy individuals; GWAS; replication analyses with external cohorts
NEW REFERENCE Sep 2013

population-based; candidate gene study (buccal)

population-based; candidate gene study (saliva)

population-based; candidate gene study

patient sample + healthy individuals; candidate gene study

patient sample; candidate gene study

healthy individuals; candidate gene study

patient sample + healthy individuals; candidate gene study
 review

60. Grabe HJ, Schwahn C, Mahler J, et al.: Moderation of adult depression by the
 serotonin transporter promoter variant (5-HTTLPR), childhood abuse and adult
 traumatic events in a general population sample. Am J Med Genet B
 Neuropsychiatr Genet 159B:298-309, 2012
 population-based; candidate gene study

61. Munafo MR, Brown SM, Hariri AR: Serotonin transporter (5-HTTLPR) genotype and
 meta-analyses

 healthy individuals; candidate gene study

 NEW REFERENCE Sep 2013

 healthy individuals; candidate gene study

 polymorphism modulates the retention of fear extinction memory. Proc Natl Acad
 healthy individuals; candidate gene study (saliva)

 transporter function affects human fear expression indexed by fear-potentiated
 healthy individuals; candidate gene study (buccal swab)

66. Osinsky R, Losch A, Hennig J, et al.: Attentional bias to negative information and
 5-HTTLPR genotype interactively predict students’ emotional reactivity to first
 healthy individuals; candidate gene study (buccal swab)

 in the promoter region of the serotonin transporter gene and biased
 attention for emotional information: a meta-analysis. Biol Psychiatry 71:373-379,
 2012
 meta-analyses

68. De Neve JE: Functional polymorphism (5-HTTLPR) in the serotonin transporter
 gene is associated with subjective well-being: evidence from a US nationally
 population-based; candidate gene study (saliva)

69. Bakermans-Kranenburg MJ, van Ijzendoorn MH: Oxytocin receptor (OXTR) and
 serotonin transporter (5-HTT) genes associated with observed parenting. Soc
 Cogn Affect Neurosci 3:128-134, 2008
 healthy individuals; candidate gene study (cheek cells)

70. Jun SE, Kohen R, Cain KC, et al.: TPH gene polymorphisms are associated with
 disease perception and quality of life in women with irritable bowel syndrome. Biol
 Res Nurs, 2012
 patient sample; candidate gene study

population-based; candidate gene study

review

patient sample + healthy individuals; candidate gene study

patient sample + healthy individuals; candidate gene study

healthy individuals; candidate gene study

patient sample; candidate gene study

review

review

healthy individuals; candidate gene study (saliva)

population-based; candidate gene study

review

healthy individuals; candidate gene study (saliva)

healthy individuals; candidate gene study (saliva or cheek cells)

healthy individuals; candidate gene study

NEW REFERENCE Sep 2013

healthy individuals; candidate gene study

NEW REFERENCE Sep 2013

healthy individuals; candidate gene study

NEW REFERENCE Sep 2013

patient sample; candidate gene study

NEW REFERENCE Sep 2013

patient sample; candidate gene study

meta-analyses

patient sample + healthy individuals; candidate gene study

healthy individuals; candidate gene study

healthy individuals; candidate gene study (mouthwash sample)

patient sample; candidate gene study